Biosynthesis of the first component of complement by human fibroblasts.
نویسندگان
چکیده
1. Haemolytic activity corresponding to that of the first component of complement (C1) was synthesized and secreted by all nine human fibroblast cell lines examined. No activity was found in the culture media of a variety of other human cell lines. 2. The component-C1 haemolytic activity secreted by the fibroblast lines behaved in an identical manner, in most respects, with that of the component-C1 haemolytic activity of human serum. The component-C1 haemolytic activity secreted by fibroblasts, however, was less susceptible to inhibition by rabbit fragment F(ab')(2) anti-(human subcomponent C1q) than was the component-C1 haemolytic activity of human serum. 3. Biosynthesis of fibroblast component-C1 haemolytic activity was inhibited by the presence of cycloheximide and regained on its removal. 4. Incorporation of radioactivity into proteins secreted by the fibroblasts and release of component-C1 haemolytic activity by the fibroblasts both increased in a linear manner until several days after the cultures had reached a state of confluent growth. 5. Radioactivity was incorporated into subcomponents C1q, C1r and C1s, as judged by the formation of specific immunoprecipitates and by absorption with immune aggregates. 6. The immunoprecipitates formed by using antisera against subcomponents C1r and C1s were run on polyacrylamide gels in sodium dodecyl sulphate, and this provided convincing physiochemical evidence for the biosynthesis of these subcomponents de novo. 7. The results obtained with immunoprecipitates formed by using anti-(subcomponent C1q) suggest that subcomponent C1q may be synthesized and secreted by fibroblast cell lines in vitro, in a form with a higher molecular weight than that of subcomponent C1q which is isolated by conventional techniques of protein fractionation from fresh serum.
منابع مشابه
The first component of complement. A quantitative comparison of its biosynthesis in culture by human epithelial and mesenchymal cells
Epithelial and mesenchymal cells synthesized and secreted all three subcomponents of the first component of complement (C1): C1q, C1r, and C1s. Quantitatively, however, columnar and transitional epithelial cells secreted 400--3,700 times more hemolytically active C1 than monocytes or fibroblasts. Only columnar epithelial cells synthesized C1 subcomponents with subunit structures similar to thei...
متن کاملThe Role of Human Adult Peripheral and Umbilical Cord Blood Platelet-Rich Plasma on Proliferation and Migration of Human Skin Fibroblasts
BACKGROUND Wound healing is a complex and dynamic process following damage in tissue structures. Due to extensive skin damage caused by burn injuries, this study determined the role of human adult peripheral and umbilical cord blood platelet-rich plasma on proliferation and migration in human skin fibroblasts. METHODS Platelet-rich plasma (5, 10, 15, 20 and 50% PRP) from human umbilica...
متن کاملP-130: Piwil2 Reprograms Human Fibroblasts to Germ Cell Lineage
Background The piwi family genes are highly conserved during evolution and play a crucial role in stem cell self-renewal, gametogenesis, and RNA interference in diverse organisms ranging from Arabidopsis to humans. Piwil2, also known as Hili, is one of the four human homologues of piwi. Piwil2 was found in germ cells of adult testis, suggesting that this gene functions in spermatogonial stem ce...
متن کاملEffect of Low–Level Helium-Neon Laser Irradiation on the Release of Interleukin 6 and Basic Fibroblast Growth Factor from Cultured Human Fibroblasts in High Glucose Medium
Purpose: Low level laser therapy is suggested as a new therapeutic method in diabetic wound healing. This survey aimed to evaluate the effects of low level laser on human fibroblasts cultured in high glucose cultures. Materials and Methods: The human skin fibroblasts were cultured under standard condition. The cells were cultured in high glucose culture medium (15mM/L) for a week and two weeks ...
متن کاملIn vitro Co-Culture of Human Skin Keratinocytes and Fibroblasts on a Biocompatible and Biodegradable Scaffold
Background: Extensive full-thickness burns require replacement of both epidermis and dermis. In designing skin replacements, the goal has been to re-create this model and make a product which has both essential components. Methods: In the present study, we developed procedures for establishing confluent, stratified layers of cultured human keratinocytes on the surface of modified collagen-chito...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 167 3 شماره
صفحات -
تاریخ انتشار 1977